O Fórum Econômico Mundial anunciou sua lista das 10 principais
tendências tecnológicas que prometem decolar e levar junto a quase
paralisada economia mundial.
Segundo a entidade, essas tecnologias poderão ajudar a alcançar um
crescimento econômico sustentável nas próximas décadas, conforme
continuam a crescer a população global e, por decorrência, as demandas
materiais sobre o meio ambiente.
A seleção das tecnologias levou em conta a possibilidade de avanços
no desenvolvimento industrial e econômico, e a possibilidade de
implantação industrial a curto e médio prazo.
A Coreia do Sul começou a testar trens alimentados por eletricidade sem fios. [Imagem: KAIST] |
Veículos Elétricos Online (OLEV)
Tecnologias de eletricidade sem fio já conseguem fornecer eletricidade para veículos em movimento.
Na próxima geração de carros elétricos,
conjuntos de bobinas de captação sob o assoalho do veículo vão receber a
energia remotamente através de um campo eletromagnético de transmissão
gerado por cabos instalados sob a estrada.
A corrente elétrica sem fios também recarrega uma bateria utilizada
para alimentar o veículo quando ele está fora das redes de suprimento ou
circulando por vias que ainda não contam com a infraestrutura.
Como a eletricidade é fornecida externamente, esses veículos precisam de uma bateria com apenas um quinto da capacidade da bateria de um carro elétrico atual.
Os sistemas de eletricidade sem fios já podem alcançar uma eficiência de transmissão de mais de 80%.
Veículos online elétricos já estão em testes de estrada em Seul, na Coreia do Sul.
A impressão 3D promete nada menos do que a quarta revolução industrial, a era das máquinas livres. [Imagem: Pearce/Science] |
A impressão tridimensional
permite a criação de estruturas sólidas a partir de um arquivo CAD de
computador, potencialmente revolucionando a economia industrial se os
objetos puderem ser impressos remotamente.
O processo envolve camadas de material que são depositadas umas sobre as outras para criar virtualmente qualquer tipo de objeto.
Projetos assistidos por computador são "fatiados" em modelos de
impressão, permitindo que objetos criados virtualmente sejam usados como
modelos para reproduções reais feitas de plástico, ligas metálicas ou
outros materiais.
O recurso de impressão 3-D de objetos também é conhecido como fabricação aditiva, tendo nascido para a criação de protótipos, mas está rapidamente se transformando em uma técnica de fabricação em larga escala.
Materiais autocicatrizantes prometem ajudar a cuidar melhor da saúde e a proteger prédios e aviões. [Imagem: UIUC] |
Materiais com autocura
Uma das características básicas dos organismos vivos é a sua
capacidade inerente para reparar danos físicos - cicatrizar-se e
curar-se de ferimentos, por exemplo.
Uma tendência crescente no biomimetismo é a criação de materiais
estruturais não-vivos que também têm a capacidade de curar-se quando
cortados, rasgados ou quebrados.
Materiais que se consertam sozinhos podem reparar danos sem
intervenção humana externa, o que poderá dar vida mais longa aos bens
manufaturados e reduzir a demanda por matérias-primas.
Outro potencial é o de melhorar a segurança inerente dos materiais utilizados na construção civil ou carros e aviões.
Novas tecnologias de microfiltragem podem viabilizar a dessalinização da água do mar a baixo custo. [Imagem: Damien Quémener] |
Purificação de água energeticamente eficiente
A escassez de água é um problema ecológico crescente em muitas partes
do mundo, devido principalmente a demandas concorrentes da agricultura,
das cidades e outros usos humanos.
Enquanto os sistemas de água doce estão sobre-utilizados ou exauridos, a dessalinização da água do mar oferece uma fonte quase ilimitada de água.
Mas hoje isso tem um custo considerável de energia - principalmente
de combustíveis fósseis - para alimentar os sistemas de evaporação ou
osmose reversa.
Tecnologias emergentes oferecem o potencial para a dessalinização e a
purificação de águas residuais significativamente mais eficientes em
termos de energia, potencialmente reduzindo o consumo de energia em 50%
ou mais.
Técnicas como a osmose reversa também podem ter sua eficiência
melhorada pela utilização de calor residual de termelétricas ou calor
renovável, produzido por energia termossolar ou geotérmica.
Vários estudos já demonstraram a possibilidade de usar a energia solar para transforma CO2 em combustível para carros. [Imagem: UCLA] |
Conversão e uso de dióxido de carbono (CO2)
As longamente esperadas tecnologias para a captura e sequestro de
dióxido de carbono ainda estão por demonstrar-se comercialmente viáveis,
mesmo na escala de uma única estação geradora de energia.
Novas tecnologias que convertem o CO2 indesejável em produtos
vendáveis podem potencialmente resolver tanto as deficiências econômicas
quanto energéticas das estratégias convencionais de captura e sequestro
de dióxido de carbono.
Uma das abordagens mais promissoras usa bactérias fotossintéticas
geneticamente modificadas para transformar resíduos de CO2 em
combustíveis líquidos ou produtos químicos de baixo custo usando
sistemas conversores modulares alimentados por energia solar.
Sistemas individuais desse tipo prometem cobrir centenas de hectares nos próximos dois anos.
Sendo de 10 a 100 vezes mais produtivos por unidade de área de terra,
estes sistemas resolvem uma das principais limitações ambientais dos biocombustíveis
gerados a partir de matérias-primas agrícolas ou de algas, e poderão
fornecer combustíveis de baixo teor de carbono para automóveis, aviões
ou outros grandes usuários de combustíveis líquidos.
A Biotecnologia está começando a criar as biofábricas do futuro. [Imagem: Wayne R.Curtis/PSU] |
Nutrição saudável em nível molecular
Mesmo em países desenvolvidos, milhões de pessoas sofrem de desnutrição, devido à deficiência de nutrientes em suas dietas.
Técnicas genômicas modernas podem determinar ao nível de sequência
genética a grande variedade de proteínas naturais que são importantes
para a dieta humana.
As proteínas identificadas podem ter vantagens sobre os suplementos
proteicos tradicionais na medida que podem fornecer uma maior
percentagem de aminoácidos essenciais, e têm melhor solubilidade, sabor,
textura e características nutricionais.
A produção em larga escala de proteínas alimentares puras para o ser
humano, com base na aplicação da biotecnologia para nutrição molecular,
pode oferecer benefícios à saúde, como melhor desenvolvimento muscular,
gestão do diabetes ou redução da obesidade.
Tecidos ciborgues misturam biológico e eletrônico. [Imagem: Tian et al./Nature Materials] |
Sensoriamento remoto
O uso cada vez mais generalizado de sensores
que permitem respostas passivas a estímulos externos vai continuar a
mudar a nossa forma de responder ao ambiente, em especial na área da
saúde.
Exemplos incluem sensores que monitoram continuamente a função
corporal - como frequência cardíaca, oxigenação do sangue e níveis de
açúcar no sangue - e, se necessário, desencadear uma resposta médica,
como o fornecimento de insulina.
Os avanços dependem da comunicação sem fio entre dispositivos - nós
das redes de sensores -, tecnologias de sensoriamento com baixo consumo
de energia e, eventualmente captação ativa de energia, através dos
chamados nanogeradores.
Outro exemplo inclui a comunicação veículo-a-veículo para melhorar a segurança nas ruas e estradas.
Cientistas mais ousados trabalham com a possibilidade de que nanofábricas produzam medicamentos dentro do próprio corpo humano. [Imagem: Avi Schroeder] |
Aplicação precisa de medicamentos por engenharia em nanoescala
Fármacos que podem ser aplicados com precisão em nível molecular no
interior ou em torno de uma célula doente oferecem oportunidades sem
precedentes para tratamentos mais eficazes, ao mesmo tempo reduzindo os
efeitos colaterais indesejados.
Nanopartículas funcionalizadas, que aderem ao tecido doente, permitem
a aplicação em microescala de potentes compostos terapêuticos.
Isso minimizando o impacto do remédio sobre os tecidos saudáveis.
Essas nanopartículas funcionais estão começando a avançar rumos aos testes clínicos.
Depois de quase uma década de pesquisa, estas novas abordagens estão finalmente mostrando sinais de utilidade clínica.
Circuitos eletrônicos biodegradáveis já funcionam como curativos eletrônicos, mas logo poderão se dissolver no corpo humano. [Imagem: Fiorenzo Omenetto/Tufts University] |
Eletrônica e fotovoltaicos orgânicos
A eletrônica orgânica baseia-se na utilização de materiais orgânicos, tais como polímeros, para criar circuitos e dispositivos eletrônicos.
Esses circuitos eletrônicos orgânicos podem ser fabricados por impressão e normalmente são finos, flexíveis e até transparentes.
Em contraste com os semicondutores tradicionais à base de silício,
que são fabricados com técnicas caras de fotolitografia, a eletrônica
orgânica pode ser impressa usando processos de baixo custo, similares à
impressão a jato de tinta.
Isso torna os produtos extremamente baratos em comparação com os
dispositivos eletrônicos tradicionais, tanto em termos de custo por
aparelho, quanto do capital necessário para produzi-los.
Embora atualmente a eletrônica orgânica não se encontre em condições
de competir com o silício em termos de velocidade e densidade, ela tem o
potencial para proporcionar uma vantagem significativa em termos de
custo e versatilidade.
Coletores solares fotovoltaicos impressos, por exemplo, custando
muito menos do que as células solares de silício, podem acelerar a
transição para as energias renováveis.
Quarta geração de reatores nucleares e reciclagem de resíduos
Os reatores nucleares atuais usam apenas 1% da energia potencial
disponível no urânio, deixando o resto radioativamente contaminado como
lixo nuclear.
O desafio de lidar com os resíduos nucleares limita seriamente o apelo desta tecnologia de geração de energia.
A reciclagem do urânio-238 em um novo material físsil caracteriza o que está sendo chamado de Nuclear 2.0.
A promessa é de estender em séculos a vida útil dos recursos de
urânio já minerados, ao mesmo tempo reduzindo drasticamente o volume e a
toxicidade do lixo nuclear, cuja radioatividade vai cair abaixo do
nível do minério de urânio original em uma escala de tempo de séculos, e
não mais de milênios, como é hoje.
Tecnologias de quarta geração, incluindo reatores rápidos resfriados
por metal líquido, estão sendo implantados em vários países e já são
oferecidos por empresas fabricantes de equipamentos de engenharia
nuclear.
Fonte:InovaçõesTecn.
Nenhum comentário:
Postar um comentário